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We compute the hierarchical ~b4-trajectory in terms of perturbation theory in a 
running coupling. In the three-dimensional case we resolve a singularity due to 
resonance of power counting factors in terms of logarithms of the running 
coupling. Numerical data are presented and the limits of validity explored. We 
also compute moving eigenvalues and eigenvectors on the trajectory as well as 
their fusion rules. 
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1. I N T R O D U C T I O N  

In the block spin renormalization scheme of W i l s o n  119'13~ renormalized 
theories come as renormalized trajectories of effective actions. Departing 
from a bare action, the renormalized trajectory is reached by an infinite 
iteration of block spin transformations. For  this limit to exist the bare 
couplings have to be tuned as the number of block spin transformations is 
increased. Consider an asymptotically free model at weak coupling. There 
the point is to keep couplings under control which increase in value under 
a block spin transformation. Such couplings are called relevant. In weakly 
coupled models-they can be identified by naive power counting. This renor- 
malization scheme has been beautifully implemented both within and 
beyond perturbation theory. We mention the work of Polchinski, 1151 
Gawedzki and Kupiainen, ~ 10~ Gallavotti,~9~ and Rivasseau ~ 171 as a guide to 
the extensive literature. 
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The underlying picture of an ultraviolet asymptotically free model 
comes from thinking of the renormalized trajectory as the unstable 
manifold of a trivial fixed point. Although this picture has been behind 
block spin renormalization since the very beginning, cl3~ it has not been 
formalized yet to an approach free of a bare action. This paper is a con- 
tribution to fill this gap. It extends the analysis begun in refs. 20 and 21 in 
the context of renormalization group improved actions for the two-dimen- 
sional O(N)-invariant nonlinear a-model. Here we will work it out for the 
q~4-trajectory in the hierarchical approximation. The hierarchical model was 
invented by Dyson f4~ and Baker ~z~ and has enjoyed the attention, e.g., of 
Bleher and Sinai, c2~ Collet and Eckmann, TM Koch and Wittwer, ~4J 
Felder, ~61 and Pordt. ~'6~ 

The q~4-trajectory will be defined as a curve which departs the trivial 
fixed point in the ~b4-direction. Technically we perform a renormalized per- 
turbation expansion in a running coupling. In the three-dimensional case 
we perform a perturbation expansion in a running coupling and its 
logarithm. The dynamical principle which proves to be strong enough to 
determine the trajectory at least in perturbation theory is stability under 
the renomlalization group. By stability we mean that the trajectory is left 
invariant under a transformation as a set in the space of potentials. Recall 
that a renormalized action always comes together with a sequence of des- 
cendants generated by further block spin transformations. Even in the case 
of a discrete transformation this sequence will prove to consist of points on 
a continuous curve in the space of potentials which is stable under the 
renormalization group. It is the computation of this curve we address. The 
result is an iterative form of renormalized perturbation theory. Its closest 
relatives in the literature are the renormalized tree expansions of Gallavotti 
and collaborators. ~9'~'~2~ A pedagogical presentation can be found in ref. 7. 

Our expansion is, however, free of divergences piled up in standard 
perturbation theory by infinitely iterated renormalization group transfor- 
mations from the very beginning. Surprisingly, we do not need to treat 
relevant and irrelevant couplings on a different footing. It will involve 
neither bare couplings nor renormalization conditions in the original sense. 
A renormalization group transformation in our approach translates to a 
transformation of the running coupling according to some fl-function. We 
will consider in particular a choice of coordinate whose associated 
fl-function is exactly linear. This idea has also appeared in ref. 5 and 
references therein. Renormalized perturbation theory furthermore will sur- 
prise us with a sequence of discrete poles at special rational dimensions. 
These poles will be traced back to certain resonance conditions on the 
scaling dimensions of powers of fields. In particular the case of three 
dimensions will be shown to be resonant. We will resolve the associated 
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singularity by a double expansion in both the running coupling and its 
logarithm. The expansion will then be extended to the computation of 
moving eigenvectors in the sense of ref. 21 on the renormalized trajectory 
and their fusion rules. Finally, we perform a numerical test of our 
renormalized actions. As expected, they prove to work well in the small- 
field region. The extension of our program to full models is under way. 
A prototype with momentum space regularization has been developed in 
ref. 18. 

2. H I E R A R C H I C A L  R E N O R M A L I Z A T I O N  G R O U P  

Hierarchical renormalization group transformations have been 
proposed in a number of forms. Their relationships have been investigated 
in ref. 14. The form used in ref. 10 is a theory of the nonlinear transformation 

1) 

on some space of Boltzmann factors Z(~b). It is equivalent to the transfor- 
mations used in refs. 8 and 14. Furthermore, it is equivalent to that of ref. 3 
in the case when L ~ =  2. In the scalar theory q~ is a single real field variable. 
We have that 

dp.,.(()=(2xy)-~/'- exp (- (2--~-y) d( (2) 

is the Gaussian measure on R with mean zero and covariance 7'- The 
parameters of (1) are the Euclidean dimension D and the block scale L. 
The subspace of even Boltzmann factors Z ( - ~ )  = Z(~) is stable under (1). 
We will restrict our attention to this subspace. Let the potential be given 
by Z(q~)= e x p ( -  V(~b)). The transformation for the potential is 

.~V(~j=_LOlog{Idltr(~)exp[_V(Ll D/2~ + ( ) ]  } (3) 

The analysis below will be done in terms of the potential. The method will 
be perturbation theory. The question of stability bounds will not be 
addressed. Regarding mathematical aspects o f ( l )  and (3), we refer to the 
work of Collet and Eckmann, c31 Gawedzki and Kupiainen, tl~ and Koch 
and WittwerJ ~4j 
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3. THE T R I V I A L  FIXED P O I N T  

Equation (3) has a trivial fixed point V.(~b)= 0. This fixed point is the 
hierarchical massless free field. The linearization of (3) at this trivial fixed 
point is given by 

s176 r ) = L D I dgt~( () (.O( L 2-  D/2r + ~) (4) 

This linearization is diagonalizable. The eigenvectors are normal ordered 
products 

:q~":~" =0-~ j=o exp (5) 

with normal ordering covariance y ' =  (1 - L  2- o ) -  ~ y. The normal ordering 
covariance has been chosen in order to be invariant with respect to integra- 
tion with dgt~,. Its singularity at D = 2  is an infrared singularity of the 
hierarchical massless free field in two dimensions. The eigenvalues are 

)., = LD+,,~,-o/21 (6) 

The eigenvalue of :$4:y, is )-4 = L 4 - o -  The eigenvector :$4:~,, is therefore rele- 
vant for D <4,  marginal for D =4,  and irrelevant for D > 4  dimensions. 
Perturbation theory can be used to compute corrections to (4) in a 
neighborhood of V.(~b). 

4. THE  r  

Let us define a curve V(~b, g) in the space of potentials parametrized 
by a local coordinate g. We call it the q~4-trajectory. We expand the poten- 
tial 

V(fb, g) Z V,_,,(g)" 2,. = .q~ .~,, (7) 
n = O  

in the base of eigenvectors (5). A natural coordinate in the vicinity of 
V,(~b) is the ~b4-coupling defined by V4(g)=g. Let us use it for a moment. 
Let the ~b4-trajectory then be the curve V(~, g) defined by the following two 
conditions: 
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1. V(4i, g) is stable under ~'. Then there exists a function fl(g) such 
that 

~v(~ ,  g) = v((~,p(g)) (8) 

The function p(g) is of course coordinate dependent. With the 
q~4-coupling as coordinate it is called the p-function. 

2. V(~b, g) visits the trivial fixed point V,(~b) at g = 0. The tangent to 
V(~b, g) at V,(~) is given by 

O 
~gg g=O V(~b, g) = :~b4:~., (9) 

This condition is equivalent to V4(g)=g+O(g 2) together with 
Vz,,(g)= O(g2), n4:2. 

The q~4-trajectory is the object of principal interest in massless 
~b4-theory at weak coupling. We should mention that our analysis also 
applies to the noncritical ~b4-trajectory emerging from the high-temperature 
fixed point. The high-temperature renormalization group in the formula- 
tion of ref. 14 is in fact of the same form (3), but for a different scaling 
dimension, - 1 - D / 2  (instead of 1 -  D/2) of the scalar field and a trivial 
change of the fluctuation covariance. We omit a presentation of a perturba- 
tion theory for the high-temperature ~b4-trajectory for the sake of brevity. 
Let us only remark here that there are no resonances at the high-tem- 
perature fixed point. 

5. PERTURBATION THEORY 

The ~b4-trajectory can be computed by perturbation theory in g as the 
solution to (8) and (9). Potentials on the ~b4-trajectory are said to scale. 
A potential V(q~, g) is said to scale to order s in g if there exists a function 

p(g) = pf"~(g) + o ( g  .'+~) 

/~-~(g) = ~ b,. gr 
I " =1  

(10) 

such that 

V(~b, g) = V~"~(ck, g) + O(g ''+' ) 

~V '~(~ ,  g) = V'~(~b, p(g)) + O(g s+ ~) 
(11) 
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and 

Vll~(~b, g) = g :q~4:),, (12) 

The scheme is to compute tic,.+ ,~(g) and VC"+'~(~, g) given flc.,-~(g) and 
VC"~(~b, g) to some order s. Let us explain it in some detail at the case of 
D = 4 dimensions, block scale L = 2, and covariance ~, = 1. Then the normal 
ordering covariance is y ' =  4/3. Computing a block spin transformation (3), 
we speak of V(~) as the bare potential and of.~V(q~) as the effective poten- 
tial. The point of departure is (12). Anticipating the terms generated in 
~V~(d; ,g )  to second order in g, we make the ansatz 

V'-'~(~b, g) = Co g2 + c2 g2 :q~2: + g [(fi4: + c6 g2 :~)6: (13) 

The coefficients are determined by the condition that (11) be fulfilled to 
second order. Equation (13) is mapped to 

5440'~ ,, :~b2: .#V~2'(qb, g(g')) = 16Co ~ - - j g - + ( 4 c 2 - 4 4 8 ) g  '2 

+ g' :~b4: --[-( 4 -  2) g'2 :q~6: + O(g '3) (14) 

Here the effective coupling, defined as the coefficient of :~b4: in the effective 
potential, is given by 

g'(g) = g - 6 0 g  2 + O(g s) (15) 

Comparing the effective potential as a function of the effective coupling 
with the bare potential as a function of the bare coupling, we conclude that 

1088 448 8 
Co= 2--if-' c2= 3 ' c 6 -  3 (16) 

on the r The coefficients of the fl-function (10) to this order are 

bl = 1, b2 = - 6 0  (17) 

It follows that g is marginally irrelevant in four dimensions. This completes 
the first step. It is iterated in the obvious manner. The general form of the 
order-s approximation is 
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s + l  

V'"(~b,g)= ~ c~](g):~b2": 

c~;](g)= L c2,,.~g ~, n<~ l 
r = 2  

c~"(g) = g  

c{S}t "~-- L ", z~ n >13 2 n ~ 6 !  ( _ n , r ~  , 

r ~ n - -  I 

(18) 

It includes all normal ordered products generated in the effective potential 
by (3) from (12) to order s in g. The iteration proceeds as above with the 
order-(s + 1) ansatz of the form (18). The condition (11) yields a system of 
linear equations for the order-(s+ 1) coefficients. (To highest order the 
coefficients have no other choice.) This system has a unique solution: the 
~4-trajectory. Note that the coefficient b.~.+~ of the fl-function is already 
determined by V~'V~(ck, g). For instance, (15) does not contain any of the 
coefficients in (13). The expansion can be computed to higher orders using 
computer algebra. To third order we find 

~ 1088 , 54784 g3 
c~ ( g ) =  2 - -~ -g - -  2 - ~  

~ 448 , 497408 3 
c'2 (g)=--3-g- 27 g 

8 , c~J(g) = - ~ g -  +352g 3 

(19) 

32 
c'.3'(g) =Tg- 

together with 

ff  3)(g) = g _ 60g2 + 8880g3 (20) 

Let us remark that the perturbation coefficients (10) and (11) come with 
alternating signs. The coefficients show a frightening increase in absolute 
value with the order in g. The full series is not expected to converge. Note 
that the coefficients look better when g is replaced by g/4L 
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6. R E S O N A N C E S  

We can apply the above scheme to compute the ~b4-trajectory in other 
than four dimensions. The solution is again of the form (18). We do 
however, encounter a new phenomenon. The improvement coefficients ~'~"~2,, 
exhibit poles at certain discrete points as functions of the dimension 
parameter  D. We call this phenomenon resonance because it can be traced 
back to the fact that certain scaling parameters become powers of one 
another at these points. This happens in particular in three dimensions. Let 
us consider the transformation (3) with block scale L = 2 and covariance 
y--  1, but this time with arbitrary value of D. We express the dependence 
on D in terms of a variable ~ = L ~ To third order in g the improvement 
coefficients are given by the rational functions 

C~o3 ~ 12~3(~+4)(e- '+  16) , = g -  

2880C4(0~ 5 "t'- 320~ 3 + 5120d + 4096)(~X + 4) 2 g3 

( - ~  8 ~  ~ 8--~-'-~--6"~3 -~ ~ ~ 

c~ ~ = 
48~2(~ 2 + 4~ + 16) g2 

( ~ - 8 ) ( ~ +  8 ) ( ~ - 4 )  2 

384~3(7~ 5 + 46~ 4 + 288~ 3 + 1728~ 2 - I024~ - 22528) 

(~ + 8 ) ( e -  8)(~ 3 - I024)(e - -4 )  3 
g3 

(21) 

c~63 , 8 , 576~(~+6)  g3 
= - 3 g- - (ct - 4)(ct - 64) 

c~ 3, =-~ g-' 

The fl-function to this order in g is given by the function 

16 576(ct + 4) g_, 
fl~3,(g) = _ _ g  

256(215~x 4 + 1400o~ 3 --  10128~ 2) 

+   --851 2--q7 g 

256(95744~ + 355328 ~ g3 

~(ct-- 8)(ct + 8 ) ( ~ - 4 ) -  " 
(22) 
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Singularities appear at positive dimensions 
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g2 g3 (23) 

0t 4 256 l/-~ 8 1024 I/3 64 
D 2 8/3 3 10/3 6 

As one goes to higher orders in g, more and more poles show up in (21) 
and (22). Let us have a closer look at the three-dimensional pole to second 
order in g. Inserting (13) into (3) at three dimensions, we find 

.~V~2~(~, g(g')) = (2Co - 360) + (c_, - 336) g,2 :~b-': 

+g' :~b'l: q - ( 4 - 2 ) g ' 2  :~6:-I-O(g '3) (24) 

The parameters of (3) are D = 3 ,  L = 2 ,  and y =  1. The normal ordering 
covariance is ~,'= 2~,. The fl-function to this order is given by 

g'(g) = 2 g -  216g 2 + O(g 3) (25) 

The :q~4:-coupling is therefore relevant in three dimensions. From (24) we 
would conclude that 

Co = 360, c 6 = -8 /3  (26) 

But there exists no solution to the equation for c2 (besides infinity). It 
follows that the :~bZ:-coupling cannot be written in terms of a power series 
in the :q~4:-coupling on the ~4-trajectory in three dimensions. The point is 
that the :q~-':-coupling flows like 

336 
- 336n22'' = - - -  log(g) g-" (27) 

log(2) 

with g =  2" upon iteration of (24). This suggests a double expansion in 
both g and log(g). 

7. L I N E A R  1 3 - F U N C T I O N  

So far we have used the ~b4-coupling as coordinate for the q~4-trajectory. 
It was defined by the condition V4(g) = g following (7). This coordinate leads 
to unnecessary complications when dealing with its logarithm. A better 
coordinate which is also interesting by itself is the linear coordinate defined 
by the condition that the fl-function be exactly given by 

fl,(g)= L4-Dg (28) 
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on the ~b4-trajectory. In terms of this linear fl-function the transformation 
on the ~b4-trajectory looks exactly like the linearized renormalization group. 
The definitions (8) and (9) remain untouched by (28). Using the expansion 
with the linear fl-function, we find that 

VJg)=g+ L V 4.rgr (29) 
t ' = 2  

also becomes a computable power series. The strategy is the same as above. 
For the case of L = 2 and 7 = 1 the ~f4-trajectory is given by 

V~3~ _ 12~3(0c + 4)(0~ 2 + 16) g2 
(0c3-- 256)(~-- 4) 3 

576cr 3 + 8~ 2 + 80c + 256)(~ +4) 2 g3 
+ l 

,, 48~2(0C2 + 40~ + 16) , 
V~ ~ - (~ ~ 8 - ~  ~ 8-~-_5- ~)2 g -  

7680(3(0(6 + 69~5 + 368~ -- 2880~ g3 
+ (~ -- ~ ) ( - ~ - -  8-)(~3 S f '624)~--  4)3 

768~3( --22528~x-" -- 144384ot-- 475136) g3 
-I-(~ ~ ~ - ) ~ _ ~  ) - ~  ~ 1 - ~ 4 ~ 3  

(30) 
36~(~+4) , 

V~3' = g +  (co- 4)(c~- 16) g- 

16cc2(53c~5 - 3336e4 - 24752~x3) g3 
-(~x + 8--~ 7 ~(~ ~ I ~  -~ 1--~ ~--- 4) 2 

16~z( 149248cx 2 + 1342464~x + 5685248) g3 

V~63 ~ = 8 g2 384cr z - 45~ -- 272) g3 

To each order of perturbation theory we find a system of linear equations 
which has a unique solution. The coefficients are again rational functions 
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in a = L D with poles at resonant dimensions. Note that (30) has an addi- 
tional pole at D = 4  as compared with (21). In four dimensions (28) 
becomes the identity and (8) a fixed-point equation. Resonances are now 
easily understood. To order m in g the transformation (3) acts as 

cg"' :~b~': ~ L n + "~2- n~cg ''' :~b2": 

= L n + , , ~ 2  - n ,  . . . .  (4  -- D)Ct~( g)m :~92.',: (31) 

A resonance thus occurs if 

D + n(2 - D) - 111(4 -- D) = 0 (32) 

In the case of D = 3 dimensions this condition becomes 

3 - 1 1 - m = 0  (33) 

Since m/> 2 in this business we find only two resonant terms (n, m) in three 
dimensions: (1, 2) and (0, 3). The former is a mass resonance, the latter a 
vacuum resonance. The resonant dimensions are rational and given by 

4m --2n 
D (34) 

1 - n + m  

In particular table (23) is immediately reproduced. An interesting variation 
of the linear fl-function consists in replacing (28) by 

f l ( g ) = b l  g + b 2 g  2 

bm = L  4 - 0  

L 2 + L  n 
b2 = 36L 4 - n  L 2 - L  n 

(35) 

truncating the fl-function (8) to second (or more generally to any fixed) 
order of perturlSation theory in the ~b4-coupling g. This fl-function has a 
nontrivial fixed point at finite g for D < 4. It is conceivable that our expan- 
sion is valid at this fixed point at least for dimensions D = 4 -  e. The coef- 
ficient b~ is universal, whereas b2 is a matter  of choice. It can be used to 
tune the fixed point to small couplings. We will not pursue this line of 
thought further at this instant. With the linear fl-function (28) the non- 
trivial fixed point is moved to infinite coupling. It is, however, best suited 
for the double expansion in both g and log(g). 

822/84/I-2-9 
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8. P E R T U R B A T I O N  T H E O R Y  IN g A N D  log (g )  

Let us consider the 44-trajectory in D = 3 dimensions, again with L = 2 
and y = 1. The problem that c2 cannot be determined in (24) such that it 
remains invariant to second order can be cured as follows. We use the 
linear fl-function defined by (28) and expand the potential in both g and 

K = log(g) (36) 

In the expansion we treat x as an independent variable having the same 
order as gO. It appears in the combination h-g 2, which is really the small 
parameter. To second order in g2 we can replace (13) by the ansatz 

V~2~(4, g)=COg2+(C2+C~_,lh')g 2:42: + ( g + c 4 g  2) :44: + c 6 g  2:46: (37) 

Here we have left out all terms which anyway turn out to be zero on the 
44-trajectory. In terms of g '=2g  and x ' = K + l o g ( 2 )  the ansatz (37) is 
mapped by (3) to 

~ V~-'~(4, g(g')) = (2% - 360) g'? 

+ (c 2 - log(2) c_, t - 336 + c,_, I h") g,2:42: 

+ (g '  + ( 2 - - 5 4 ) g ' 2 ) : 4 4 :  

(38) 

As a consequence, (37) reproduces its form up to a change of the running 
coupling (28) if and only if 

8 336 
Co=360, C4"~- -108,  c6= - 5 '  c,_,1 = log(2) (39) 

The parameter c2 is free. To second order in g we find a one-parameter 
family of solutions to (8) and (9). The free parameter is associated with the 
mass resonance (1, 2) of (33). One immediately anticipates another free 
parameter to third order in g coming with the vacuum resonance (0, 3). 
This is indeed the case. The general solution of (8) and (9) to third order 
in g is given by 
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54432 3 3 
V ~ 3 ~(r g) = 360g2 + ~ g-h" + c o g 

g2 336 ., 12096 ~ ~ :r + c2 l~g(2)g-x+(l16928-36c,_)g3+~gx) 

8 \ 3 896 g3h.):r +(g--lO8g2+(17520--'~c2Jg" + ~  

8 g2 864g3) :r 
+ ( - 5  + 

32 _1_ ..~_ g3 :r (40) 

including Co and c2 as free parameters. Thereafter we have no further free 
parameters in the higher order coefficients. Thus we have to supplement the 
definition of the r given by (8) and (9) by two additional condi- 
tions on Co and c2 in three dimensions to single out a curve in the space 
of interactions. We choose 

Co=0, c 2 = 0  (41) 

With this choice the perturbation theory has a minimal number of vertices. The 
conditions (41) can be thought of as additional renormalization conditions. 

At higher orders the scheme explained above iterates. The general 
form of the potential at order s is 

s + l  
W"(r g) = ~ v~(g) :r 

t l  = 0 

L [,-/23 
W~;](g) ~ " ' n ~< 1 = V2n, r,, g K, 

r=2 ,=o (42) 
.,. [ ~/2 ] 

v~"(g) = g + E E v4.,..,g-rK' 
, '=2 t=0  

L [r/2] 

v~;~(g) = E v2,,.,.,g",,', .>_.3 
r=n - - [  /=0  

Here the third-order coefficients are given by (40) and, for instance, (41). 
To each further order of perturbation theory we meet a system of linear 
equations possessing a unique solution for the coefficients in (42): the 
r in terms of the double expansion. Recall that ic should be 
substituted by log(g) in (42). 



132 Rolf and Wieczerkowski 

9. N U M E R I C A L  C A L C U L A T I O N  OF THE 
R E N O R M A L I Z E D  T R A J E C T O R Y  

Hierarchical renormalization group flows can also be computed using 
standard numerical methods. Let us perform a numerical investigation of 
the transformation (3) in order to determine the limits of validity of the 
expansion (42) in g and log(g). Furthermore, we want to investigate the 
large-field behavior of our expansion. We choose the following numerical 
setup. To calculate the transformation (3) iteratively, we sample the poten- 
tial V at N equidistant points between 0 and ~bma x. Then we perform a 
cubic spline interpolation and integrate using standard NAG library func- 
tions. To reduce the error due to boundary effects at ~b =~b .... we always 
choose q~m.x SO that V(~b .... )=  Vm.x with V, .... large enough; for example, 
Vm.x = 20 will do. For ~b > ~b .... we set 

V(~) = v . v ( ~ - a ) - b  (43) 

and choose a and b so that the first derivative of V at ~b .... is continuous. 
Here by Vwr we mean the quadratic high-temperature fixed point of (3). 
Field asymptotics have been investigated by Koch and Wittwer in their 
work on the nontrivial double-well fixed pointJ ~4~ That means that we sup- 
plement our numerical calculation with the expectation that the potentials 
on the renormalized trajectory have HT-like asymptotic behavior. We let 
the fluctuation field ~ vary between -~,,~,x and ~ .... and choose ~ .... = 20. 
This produces errors which can be neglected. As in the case of the expan- 
sion, we restrict our attention to the space of symmetric potentials which 
is invariant under (3). All potentials were calculated with L =2 ,  D = 3, 
y =  1, and N=401 .  To determine the renormalized trajectory according 
to our definition in Section 4 supplemented by the condition c2 = 0  (see 
Section 8), we proceed as follows. We start with a bare potential 

[ 336 ~ 12096 ~ "~ :~b2: 
V= ~ l~g( 2 ) g?~h" + 116928g 3 + lo---~) g'olC ) 

1 " 896 a .'~ :q~4: + g o -  0 8 g ; + 1 7 5 2 0 g 3 + ~ g - o  K) 

8 , 4 ~):~b6: + - ~ g o + 8 6  g~ 

32 3 :~bS: +-~- go (44) 
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and choose go to be a sufficiently small number, which means that an itera- 
tion starting with L-"'go would yield the same trajectory ifm e f~. We have 
chosen go = 1 0 - 6 .  It is convenient to normalize the potential with the con- 
dition V(ck = 0 ) =  0. The numerically determined potential will be referred 
to as exact in the following. We perform 12 iterations of the transformation 
(3). The analogous perturbative potentials can be found by solving the 
equation 

go = V 4 ( g o )  ( 4 5 )  

for go (which gives approximately 10 - 6 ,  of course) and then follow the 
renormalization group flow to 

L"~o, n = O  ..... 13 (46) 

For the calculation of the perturbative potentials we used the seventh order 
of our perturbation expansion. The comparison between the exact and the 
perturbative potentials can be seen in the following figures. The exact 
potentials correspond to the continuous lines, the perturbative potentials 
correspond to the dashed lines. In Fig. 1 one can see that after eight renor- 
malization group steps the exact and the perturbative data are nearly the 
same. If, however, the number of renormalization group steps exceeds nine, 

20 

l b  

~ I0 

g 

o 
I 

field phi 
20 

Fig. I. Exact and perturbative potential after eight renonnalization group steps. Perturbative 
data correspond with dashed lines. We started the iteration near tile trivial fixed point. 
Detailed information can be found in the text. 
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Fig. 2. Exact and perturbative potential after nine renormal izat ion group steps. Above 
lz(~) = 20 we assumed HT- l ike  behavior. There are deviations due to the wrong large-field 
behavior o f  our  expansion. 
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15 

Fig. 3. Exact and perturbative potential after ten renormalization group steps. The perturba- 
tion expansion is only valid in the small-field region. This figure illustrates the borderline of 
the region of validity of our expansion in g and log(g). 
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Fig. 4. Exact potential and Pad6 approximant of the perturbative potential after 11 tenor- 
realization group steps. Both curves coincide because the Pad6 approximant has the right 
large-field behavior. 

there is a clear digression for ~b/> 18. This can be seen in Fig. 2. That means 
that the large-field behavior of the perturbative expansion is wrong, since 
the asymptotic behavior of the exact potential is quadratic. If the number 
of renormalization group steps is bigger than ten, the perturbative expan- 
sion is only valid for very small fields, We therefore conclude that our 
expansion is no longer valid for g >  10 -3. The borderline is illustrated in 
Fig. 3. One can, however, improve the perturbative data if one works with 
Pad~ approximants. In Fig. 4 we compare the (9, 7) Pad6 approximant 
of our perturbation series in the variable q~ (which has the expected 
asymptotic behavior) with the numerical data after 11 renormalization 
group steps. Amazingly enough, both curves coincide. We will not go in 
details here. Let us only mention that some Pad6 approximants develop 
additional unphysical poles at real values of~b. 

10. OBSERV.ABLES 

The potential itself is not the only object of interest on the renormalized 
trajectory. Its infinitesimal neighborhood is also of physical significance. 
We can study this neighborhood in terms of certain generalized eigen- 
vectors of the linearized renormalization group. At the trivial fixed point 
these eigenvectors are simply normal ordered products and their eigen- 
values determine their scaling dimensions and (trivial) critical exponents. 
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Away from the fixed point we can deform these normal ordered products 
with a twofold intent. First, a renormalization group transformation always 
comes together with a transformation of local operators preserving expec- 
tation values. Our deformations are particular in the sense that they are 
eigenvectors of this transformation and hence only get multiplied by a 
number. Second, one may ask at what pace one departs from the renor- 
malized trajectory (and hence criticality) upon infinitesimal perturbations. 
The leading eigenvalue determines this pace of departure. In the hierarchi- 
cal approximation a local observable is a function (n(q~), ~ E R. Observables 
are transformed according to the linearized renormalization group. The 
linearization Z, av~60 of the transformation (3) in the direction C o at the 
potential V is given by 

s = 0  _-= o ~(V+z(O)(~b) (47) 

Written out explicitly, this gives 

s ) = ~ dp:,(() O(L' -~ + ~) exp( - V ( L  l --D/21p + ~)) (48) 
j dlq,(() exp( - V(L l -D/,_O +())  

after division by L ~ A local observable will be called a running eigenvector 
on the renormalized trajectory if it satisfies the invariance condition 

(49) 

e(g) will be called the corresponding running eigenvalue. This definition is 
not unambiguous. It still allows the fieedom to multiply an observable with 
a function f ( g )  changing both the observable and more, annoying, also the 
eigenvalue. The origin of this freedom is, however, simply that we can 
choose a different normalization in the tangent space at each point over the 
renormalized trajectory. Thus we have to supplement a normalization 
condition. Our observables will be indexed by an integer 17. The n th observ- 
able will be a deformation of :~":/ .  We then choose the normalization that 
the coefficient in front of :~":;., of the nth observable in a normal ordered 
basis is one. We can then identify the eigenvalue as this coefficient of the 
effective observable. The notion of running eigenvectors and eigenvalues 
was introduced in ref. 21. Different local observables are distinguished by 
their values at the trivial fixed point. Starting from a normal ordered 
monomial, we can apply perturbation theory to compute corrections in g. 
The result is a moving frame in the tangent space over the renormalized 
trajectory. Consider specifically the eigenvector :~b":/ at the trivial fixed 
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point in Section 3. The corresponding running observable to the order s 
of perturbation theory will be called Cl,;~(~b,g). The initial condition is 
f(~(s)( ~ e ,, ~ ,  0 ) =  :~b":~,, The corresponding running eigenvalue to this approxi- 
mation will be denoted by e~,;"l(g). Let us explain the perturbative scheme 
in some detail by calculating C~ ~ i(q~, g) in three dimensions, using the linear 
fl-function. To first order of perturbation theory for this observable we find 

~f~_ 1(4~, g) = C4,o g :q~4: + :~b2: + (Co,o + Co, 1 x) g (50) 

This form is reproduced under the renormalization group to this order. The 
effective observable turns out to be 

&OVRT'~C~ ~' '(~, g) = (~Ca.o -- 1) g :q~4: 

+(�89 :4~: 

+{�89189 g (51) 

Therefore the running eigenvalue e~ l)(g) is, to this order, 

e~)(g) = �89 - 9 g  (52) 

Division by e~l(g)  yields an effective observable of the form 

Coll~ _ (�88 -- 2) g :~b4: 2,ell" - -  

+:~2: 

+ {Co.0 + Co,,[K - l n ( 2 ) ]  } g (53) 

after rescaling g. Invariance requires the coefficients to take the values 

c4.o= -8 /3 ,  Co.t = 0  (54) 

The value of Co.o is not constrained. Therefore we have an additional renor- 
malization condition for our observable at this order. To derive the general 
resonance condition for observables consider the contribution cg j :q/": to 
C,,. It is mapped to 

cL,,,~ - o/21+ t( o - 4 ) - t , ( I  - o / 2 ) g / : ~ 1  m: ( 5  5 ) 

after division by e,(g).  Observable resonances therefore occur at rational 
dimensions 

8l + 217 - 2m 
O - (56) 

21 - m + n 
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o r  

2 l ( 4 -  D) 
m - 1-11 (57) 

2 - - D  

For the case D = 3 this means that we have extra renormalization condi- 
tions when 

m = n - 2 l  (58) 

For instance, the observable 6~ requires two conditions. 
The following list displays the first three observables using the 

parameters L = 2, D = 3, and y = 1. Free parameters are set to zero. We 
have 

~%-')(~, g ) :  1 

6(13)(q~, g) = :r 

(4 g+ ; 
+ 144g__8961n_ ~ 23360g3 . 3. 

/'16g'- 1728g3) ~__~____ :r 

256 
9 :~7:~,. 

2016rcg 2 632448g 3 (59) C~3)(r = -960g  2 4 ln(2) 

+ :r 

+ ( _ ~ + 4 3 2 g 2  1792g 3'< 483072g3). 4. 
ln(2) - "r ';' 

l12g 164160g3"~ 
+ 9 3i  // :q~6: y, 

640g 3 
9 :r 
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The corresponding eigenvalues are 

e~o 3) = 1 

e',3' x/~ 8 4 x / ~ K g 2 + 2 8 x / ~ g ' - 3 5 2 8 x / ~ x g 3  
= T 4 In(2) In(2) - 34608 x/~ g3 

el3~ 1 168h'g 2 17136g3K 
_ = ~ - 9 g + ~ +  1232g'-- ln(2) 287736g3 

(60) 

In the following section on fusion rules and in the numerical section we 
have used seventh-order approximants. They will not be displayed, because 
of lack of space. 

11. FUSION RULES 

The computation correlation functions of local observables requires 
the knowledge of their fusion rules. The fusion rules of two observables 
G(r g) and G,(r g) are defined by 

~%,(r g) (_9.,(r g) ~ I = N. . , (g )  0~(r g) 
I = 0  

(61) 

The coefficient N,~ induces a symmetric bilinear form ( . ) on the space 
of observables by 

((.9,,(r g), (5",(r g ) )  :=N~ (62) 

In the thermodynamic limit only this overlap of their product with the 
constant term survives. See ref. 21 for further details. The perturbation 
expansion for the fusion rules takes the form 

s 
N.,, ,(g) = ~ (63) N,,,,I k gk 

k=O 

To zeroth order we recover the fusion rules for normal ordered products. 
Consider parameter values D = 3, y = 1 with normal ordering covariance 
y '=  2. To second order we then find 

( 2 + g 2 (  - x 3136"~\ (..O~12)( q~, g ) (_.C'{12)( q~, g ) = \ . .  2 0 1 6 1 - - ~ + - - - ~ ) ) ~ ~ 1 6 2  

+ (1 - 16g + 1856g 2) (.0 ~-'~(r g) 

- 48gZ(.0 ]2~(r g) 
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d2~l'-'( fb, g ) (~~ '( q~, g ) = ( 4 + g (1681nK( 2~ -- 32 ) 

, (  K 165856)) ,~,2,(~b, g } 
+ g -  87361n(2) 

+(1--32g+g'-(2241~(2~+5504))('c~'(e}'g)\ ( )  

-- 96g2~0~-'1(~, g) (64) 

e,_,-',(~, g) e;?�91 g /=  8 -  720g + g-" -179424 ~ + e~2'(~b, g) 

+(8+g(6721n@2~-256"~\ ( ) ) 

,( 9172)) + g- 69888 ln(2) ~0~-'~(~, g) 

( ( )) + 1 - 6 4 g + g ' -  1 7 9 2 1 n ~ +  14720 (_c~42'(4),g) 

_ 192g-'~0~-~(4, ' g )  

Free renormalization parameters have been put to zero. Perturbation 
theory leaves us with a deformed normal ordered fusion algebra. Its 
structure will not be investigated here. 

12. NUMERICAL CALCULATION OF THE OBSERVABLES 
AND EIGENVALUES 

Similar to the potentials on the renormalized trajectory, we are now 
going to calculate the eigenvalues and observables of our theory in three 
dimensions numerically. The aim is again the determination of the region 
of validity of our perturbative expansion in g and log(g) now for the eigen- 
values and observables. To this end we restrict the action of the linearized 
renormalization group transformation (48) to the finite-dimensional space 
of observables which is spanned by 

~"', O ~ m ~ < M  (65) 
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After performing an expansion (which is most conveniently done by 
differentiation), we get a finite-dimensional representation matrix L of the 
linearized renormalization group transformation 

M 

~v~T.~r ~= ~, L~,j~ j (66) 
j=o 

Now we are able to calculate the eigenvalues and observables of L. Because 
the matrix L is of course only an approximation of the transformation (48) 
we have to choose M big enough to get correct results. We have chosen M = 8 
and expect that the first four eigenvalues and eigenvectors do not suffer from 
big errors due to the trucation. In Fig. 5 we plot the four largest eigenvalues 
of transformation (48) against the number of renormalization group steps. 
The crosses correspond to the exact (i.e., numerical) calculation, whereas the 
boxes correspond to our perturbation expansion. We start at the perturbative 
potential at go = 10 -6  which means near the trivial fixed point. Then we 
follow the renormalized trajectory, performing numerical and perturbative 
renormalization group steps. After six renormalization group steps, i.e., at 
g = 26go perturbatively (compare Section 7), one can see the first small devia- 
tions between the perturbative and the exact eigenvalues. After ten renormal- 
ization group steps (i.e., at g = 1.0 x 10 -3)  there is a clear distinction between 
both. We recover and sharpen the former result that for g > 10-3 our expan- 
sion cannot be said to be valid any longer because of nonperturbative effects. 

1.2 

1.0 

0 . 8  

0.6[ r~ 

?i- I 

0 

I I r i i i , a I I 

5 10 
renormolizotion group step number 

Fig. 5. Exact (crosses) and perturbative (boxes) eigenvalues of transformation (48) against 
the number of renormalization group steps. The iteration starts near the trivial fixed point. 
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Fig. 6. 
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Exact and perturbative C~(~) after four renormalization group steps. In the small-field 
region our expansion performs very well 
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Fig. 7. Exact and perturbative d~(~) after six renormalization group steps. Of course the 
deviations at large values of g are due to the wrong large-field behavior of the perturbation 
expansion. 
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Fig. 8. Exact and perturbative e3({b) after four renormalization group steps. 
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Fig. 9. Exact and perturbative C3(r after six renormalization group steps. 
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In Figs. 6-9 we plot the exact and perturbative observables ~0 z and C3 
after four and after six renormalization group steps, respectively. Here the 
perturbative data correspond to the dashed lines. For large fields we have 
deviations for both observables which are to some extent due to the trunca- 
tion of the transformation (48). The small-field behavior has been replotted 
in the insets in order to illustrate the more significant influence of the trun- 
cation on the observable ~% as well as to illustrate the right behavior at 

= 0  of our calculations. Here we just recover the aproximate normal 
ordering near the trivial fixed point. Because of nonperturbative effects, we 
cannot reach the nontrivial fixed point using the naive series for the eigen- 
values. It would be very interesting, however, to find a way to sum up our 
expansion in g and log(g)  in order to calculate critical exponents at the 
nontrivial fixed point. This problem will be investigated in our future work. 
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